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... il fatto è che un gran numero di incantatori è sempre tra noi,
e tramuta le cose conferendo loro un aspetto ingannevole,

dirigendole come conviene alla loro fantasia,
secondo che vogliono distruggerci o favorirci.
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Chapter 1

Lipschitz Analysis

Let (X, dX) and (Y, dY ) be two metric spaces and L ≥ 0. A function f :
X −→ Y is said to be L-Lipschitz if

dY (f(x), f(y)) ≤ L · dX(x, y) (1.1)

for every pair of points x, y ∈ X.

For a function f : X → Y the Lipschitz constant is defined by

‖f‖Lip = sup{dY (f(x)− f(y))

dX(x, y)
: x, y ∈ X, x 6= y}. (1.2)

Indeed, f is Lipschitz if ‖f‖Lip <∞.

Let us notice that Condition (1.1) is purely metric and appears nearly
everywhere in mathematics. Throughout these notes will shall use the fol-
lowing notation: n-dimensional Euclidean space stands for `n2 ; i.e., the space
Rn with the usual distance

‖x− y‖2 =

[
n∑
i=1

|xi − yi|2
] 1

2

.

For a general metric space, B(x, r) will stand for open ball centered at
x ∈ X with radius r > 0 while B(x, r) for closed balls. Usually, we use
BX instead of B(θX , 1), as unit ball, in case we distinguish a point θX as
origin, and by SX we consider the related unite sphere associate with. In
case X = Rn we simply use Sn−1.

1.1 Extension

For every X ⊆ Y we denote by e(X, Y, Z) the infimuum over all constants K
such that every Lipschitz function f : X → Z can be extended to a function
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f̃ : Y → Z satisfying ‖f̃‖Lip ≤ K‖f‖Lip. We also define

e(Y, Z) = sup{e(X, Y, Z) : X ⊆ Y }

and

e(X) = sup{e(X, Y, Z) : X ⊆ Y, Z a Banach space}.

In this section, we would like to review the question whether or not, given
a L-Lipschitz f : Z −→ Y , Z ⊆ X, it can be extended by a Lipschitz function
on the whole space X.

Remark 1.1. In [9], Lindenstrauss provided an example in which Banach-
space valued Lipschitz functions do not admit extension.

1.1.1 Euclidian case

In case X = Rn and Y = Rm this can be done always. Let us first start to
recall an easy exercise.

Lemma 1.2. Let {fi : i ∈ I} be a collection of L-Lipschitz functions, fi :
A −→ R, A ⊆ Rn. Then the functions

x 7−→ inf
i∈I

fi(x), x ∈ A,

and

x 7−→ sup
i∈I

fi(x), x ∈ A,

are L-Lipschitz on A (if finite at one point).

Note that a L-Lipschitz function f : A −→ Rm can be trivially extended
on A, simply by uniformly continuity.

Theorem 1.3 (McShane-Whitney extension theorem). Let f : A −→ R,
A ⊆ Rn, be a L-Lipschitz function. Then there exist a largest and smallest
L-Lipschitz functions

fmin : Rn −→ R

and

fmax : Rn −→ R,

respectively, which extend f ; i.e. for any L-Lipschitz function G : Rn −→ R
such that G|A = f then

fmin ≤ G ≤ fmax.
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Proof. It is enough to use the previous lemma and define

fmin(x) = sup
a∈A
{f(a) + L‖x− a‖2}

and
fmax(x) = inf

a∈A
{f(a)− L‖x− a‖2}

If we apply McShane-Whitney extension theorem on each coordinate, we
obtain

Corollary 1.4. Let f : A −→ Rm, A ⊆ Rn, be a L-Lipschitz function. Then
there exists

√
mL-Lipschiz function f̃ : Rn −→ R such that f̃ |A = f .

A natural question is whenever we can find a better Lipschitz extension,
with constant independent of the dimension of the target arrive space. The
answer came out in 1934 by M.D. Kirszbraun [7].

Theorem 1.5. Let f : A −→ Rm, A ⊆ Rn, be a L-Lipschitz function. Then
there exists L-Lipschiz function f̃ : Rn −→ R such that f̃ |A = f .

Lemma 1.6. Let H be a Hilbert space, C ⊆ H be a non empty closed convex
set and b ∈ H. Then there is b1 ∈ C such that

〈z − b, b1 − b〉 ≥ ‖b1 − b‖2, for every z ∈ C.

Proof. Set α = inf{‖z − b‖ : z ∈ C}. For each n ∈ N, let Cn = {z ∈ C :
‖z − b‖ ≤ α + 4−n}. It easy to show that

‖z1 − z2‖ ≤ 2−n
√

8α + 4, for all z1, z2 ∈ Cn.

Indeed, since 1
2
(z1 + z2) ∈ C then ‖1

2
(z1 + z2)− b‖ ≥ α. Now

4α2 ≤ ‖2(
1

2
(z1 + z2))− 2b‖2

= ‖(z1 − b) + (z2 − b)‖2

(parallelogram law) = 2‖z1 − b‖2 + 2‖z2 − b‖2 − ‖(z1 − b)− (z2 − b)‖2

≤ 4(α + 4−n)2 − ‖z1 − z2‖2.

Therefore,

‖z1 − z2‖2 ≤ 4((α + 4−n)2 − α2) ≤ 4−n(8α + 4).
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For each n ∈ N, let zn ∈ Cn. For what we said before, ‖zm − zn‖ ≤
2−m
√

8α + 4, n ≥ m. Therefore the sequence (zn)n is Cauchy and then ad-
mits limit point b1 ∈ C (C is closed!). Of course,

α ≤ ‖b1 − b‖ = lim
n
‖zn − b‖ ≤ α,

thus ‖b1 − b‖ = α.

Now, let z ∈ C, since C is convex then λz+(1−λ)b1 ∈ C for all λ ∈]0, 1[.
But then,

‖b1 − b‖2 ≤ ‖(λz + (1− λ)b1)− b‖2

= λ2‖z − b‖2 + 2λ(1− λ)〈z − b, b1 − b〉+ (1− λ)2‖b1 − b‖2;

subtracting ‖b1 − b‖2 from both sides,

0 ≤ λ2‖z − b‖2 + 2λ(1− λ)〈z − b, b1 − b〉 − 2λ‖b1 − b‖2 + λ2‖b1 − b‖2;

dividing by 2λ > 0, we get

0 ≤ 1

2
λ‖z − b‖2 + (1− λ)〈z − b, b1 − b〉 − ‖b1 − b‖2 +

1

2
λ‖b1 − b‖2;

letting λ→ 0 we get the thesis.

Lemma 1.7. Let H1, H2 two Hilbert spaces and J ⊆ H1 be a non empty
finite set. Let g : J −→ H2 be a 1-Lipschitz function such that ‖g(x)‖ > ‖x‖
for all x ∈ J . Then 0 6∈ co(g(J)).

Proof. Note first that

〈x, y〉 =
1

2
(‖x‖2 + ‖y‖2 − ‖x− y‖2)

<
1

2
(‖g(x)‖2 + ‖g(y)‖2 − ‖g(x)− g(y)‖2)

= 〈g(x), g(y)〉

Now, if w =
∑

x∈J λxg(x), with λx ∈ [0, 1] and
∑

x∈J λx = 1,

‖w‖2 = 〈w,w〉

= 〈
∑
x∈J

λxg(x),
∑
y∈J

λyg(y)〉

=
∑
x,y∈J

λxλy〈g(x), g(y)〉
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>
∑
x,y∈J

λxλy〈x, y〉

= 〈
∑
x∈J

λxx,
∑
y∈J

λyy〉

= ‖
∑
x∈J

λxx‖2

≥ 0.

Therefore, w cannot be the origin.

Lemma 1.8. Let H1, H2 be two Hilbert spaces, I ⊆ H1 finite, f : I −→ H2

a 1-Lipschitz function and a ∈ H1. Then there exists b ∈ H2 such that
‖b− f(x)‖ ≤ ‖a− x‖ for every x ∈ I.

Proof. Trivial cases: I = ∅ choose b = 0 and a ∈ I choose b = f(a). In the
other cases, let C = co(f(I)) ⊆ H2 which is nonempty convex set. Let us
define G : C −→ [0,+∞[ as

G(z) = max
x∈I

‖z − f(x)‖
‖a− x‖

.

Since I is finite, G is continuous on C (see C as bounded convex set of a finite
dimensional space, then compactness holds) then G attains its minimum at
a point b ∈ C. Set

γ = G(b) and J = {x ∈ I :
‖b− f(x)‖
‖a− x‖

= γ}.

Of course J is non empty. First, let us prove that b ∈ co(f(J)).

Suppose that b 6∈ co(f(J)), by Lemma 1.6 there is b1 ∈ co(f(J)) such
that

〈z − b, b1 − b〉 ≥ ‖b1 − b‖2, for every z ∈ co(f(J)).

In particular, 〈f(x) − b, b1 − b〉 ≥ ‖b1 − b‖2, for every x ∈ J . For a small
δ > 0, let us consider bδ = (1− δ)b+ δb1 ∈ C. If x ∈ J , then

〈f(x)− b, bδ − b〉 = δ〈f(x)− b, b1 − b〉 ≥ δ‖b1 − b‖2

thus

‖f(x)− bδ‖2 = ‖(f(x)− b)− (bδ − b)‖2

= ‖f(x)− b‖2 − 2〈f(x)− b, bδ − b〉+ ‖bδ − b‖2

≤ ‖f(x)− b‖2 − 2δ‖b1 − b‖2 + δ2‖b1 − b‖2
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(since 0 < δ ≤ 1) < ‖f(x)− b‖2

On the other hand, if x ∈ I \ J ,

lim
δ→0

‖f(x)− bδ‖
‖x− a‖

=
‖f(x)− b‖
‖x− a‖

< γ,

so there is a δx > 0 such that ‖f(x)−bδ‖
‖x−a‖ < γ whenever 0 < δ ≤ δx. Since I \ J

is finite, it is evidente that we can choose δ ≤ δx for all x ∈ I \ J . For this
δ > 0 we have

‖f(x)− bδ‖
‖x− a‖

< γ, ∀x ∈ I.

This would implies G(bδ) < γ = G(b), against the fact that b was minimum
for G. Thus b ∈ co(f(J)) and then it can be written as b =

∑
x∈J λxf(x)

with λx ∈ [0, 1] and
∑

x∈J λx = 1.

Set J1 = {x− a : x ∈ J} and h : J1 −→ H2 be h(x) = f(x+ a)− b. One
has,

‖h(x)− h(y)‖ = ‖f(x+ a)− f(y + a)‖
≤ ‖(x+ a)− (y + a)‖
= ‖x− y‖,

and (since x+ a ∈ J)

‖h(x)‖ = ‖f(x+ a)− b‖ = γ‖x‖.

Therefore, ∑
x∈J1

λx+ah(x) =
∑
x∈J1

λx+a(f(x+ a)− b)

=
∑
x∈J

λx(f(x)− b)

=
∑
x∈J

λxf(x)−
∑
x∈J

λxb

= b− b
= 0.

Of course, λx+a ∈ [0, 1] with
∑

x∈J1 λx+a = 1. Thus, 0 ∈ co(h(J1)). By Lemma
1.7 there must exists x ∈ J1 such that ‖x‖ ≥ ‖h(x)‖ = γ‖x‖. Since a 6∈ I we
have that x = x′ − a 6= 0. Thus γ ≤ 1. Finally

G(b) ≤ 1⇒ ‖f(x)− b‖ ≤ ‖x− a‖, ∀x ∈ I.
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Lemma 1.9. Let {x1, . . . , xk} be a finite collection of points in Rn, and let
{y1, . . . , yk} be a finite collection of points in Rm such that

‖yi − yj‖2 ≤ ‖xi − xj‖2, ∀i, j ∈ {1, . . . , k}.

If r1, . . . , rk are positive numbers such that

k⋂
i=1

B(xi, ri) 6= ∅,

then
k⋂
i=1

B(yi, ri) 6= ∅, .

Proof. It is enough to define f(xi) = yi, choose a ∈
⋂k
i=1B(xi, ri) and apply

the previous Lemma.

Remark 1.10. M. Gromov in [6] has proved a stronger version of the pre-
vious Lemma. Under the same assumption, actually the following holds

λ

(
k⋂
i=1

B(xi, ri)

)
≤ λ

(
k⋂
i=1

B(yi, ri)

)
,

where λ denotes the Lebesgue measure on the Euclidean spaces.

Proposition 1.11. Let f : F −→ Rm a 1-Lipschitz function, with F ⊆ Rn

a finite set. If x ∈ Rn, then there exists an extension of f to F ∪ {x} as
1-Lipschitz function.

Proof. Suppose F = {x1, . . . , xk}. Set ri = ‖x− xi‖2 and yi = f(xi). By the
previous Lemma, there is a point y ∈ Rm such that

‖y − f(xi)‖2 ≤ ‖x− xi‖2, for all i ∈ {1, . . . , k}.

The desired extension is accomplished by setting f(x) = y.

We are ready to prove the main theorem.

Proof. (of Theorem 1.5)

By dividing the function f by L, we may assume that f : A −→ Rm

is 1-Lipschitz. We use a standard Ascoli-Arzelá type argument. Choose a
countable dense {an, n ∈ N} of A and {bn, n ∈ N} dense of Rn \ A. By
Proposition 1.11, for each k ∈ N there exists a 1-Lipschitz function

fk : {a1, . . . , ak} ∪ {b1, . . . , bk} −→ Rm,
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such that fk(ai) = f(ai) for every i = 1, . . . , k. Since the sequence (fk(b1))k
is bounded in Rm, it has a convergent subsequence, say (fk1j (b1))j. Similarly,

from the mappings corresponding to this subsequence, we can subtract an-
other subsequence, say (fk2j )j such that (fk2j (b2))j converges. Continuing this

way and passing to the diagonal sequence gj = fkjj
we find that the limit

f̃(c) = lim
j→∞

gj(c) ∈ Rm

exists for every c ∈ {a1, a2, . . . } ∪ {b1, b2, . . . }. Moreover,

f̃ : {a1, a2, . . . } ∪ {b1, b2, . . . } −→ Rm

is 1-Lipschitz and f̃(ai) = f(ai) for all i ∈ N. Since {a1, a2, . . . }∪{b1, b2, . . . }
is dense in Rn we can extend easily f̃ on the whole space Rn.

1.1.2 Doubling metric space case

Recall that the doubling constant of a metric space (X, d), denoted by λ(X),
is the infimuum over all natural numbers λ such that every ball in X can be
covered by λ balls of half the radius. When λ(X) <∞ one says that (X, d) is
doubling. A measure µ on a metric space (X, d) is said doubling, in such case
one says that the metric measure space (X, d, µ) is doubling, if there exists a
constant C ≥ 1 such that whenever we pick a ball B(x, r) in X

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Let us note that every Euclidean space is doubling. In [3], it is proved that
if (X, d) is a doubling metric, then for any 0 < α < 1, (X, dα) embeds into
`k2 with distortion D, where k and D depend only on the doubling constant
of X. That means, there exists a injective Lipschitz function,

f : (X, dα) −→ `k2,

with inverse also Lipschitz f−1 : f(X) −→ X, such that D = ‖f‖Lip ·
‖f−1‖Lip < ∞. The infimum of such constants D is usually called Lipschitz
distortion.

Here, (X, dα) is the metric with all distances raised to the power α (this
is called a snowflaked version of X). Unfortunately, the dependence of k and
D on the doubling contant is exponential. Assouad also conjectured that the
above result holds even when α = 1. This question was solved by Semmes
[12] which disproved this conjecture.

It is still unknown the following
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Question 1.12. Does every doubling subset of `2 admit a bi-Lipschitz em-
bedding into some Euclidean space?

Throughout this section, we would like to extend in a much stronger
version the theorem we have seen in the last subsection.

Before to go on the main result of this section, we would like to treat a
particular case where in spirit will help to understand the idea behind.

A metric space (X, d) is called uniformly discrete if d(x, y) ≥ ε > 0, for
all x 6= y, x, y ∈ X. The following observation is due by W.B. Johnson, J.
Lindenstrauss and G. Schechtman (1986).

Proposition 1.13. Let (X, d) be a metric space, Y ⊆ X be a uniformly ε-
discrete subspace with finite diameter D and Z be a Banach space. Then every
Lipschitz function f : Y −→ Z admits a Lipschitz extension f̃ : Y −→ Z
such that

‖f̃‖Lip ≤
2D

ε
‖f‖Lip.

Proof. Fix any x0 ∈ Y and define

f̃(x) =


2
ε

[
d(x, t)f(x0) + ( ε

2
− d(x, t))f(t)

]
, if x ∈ B(t, ε

2
), some t ∈ Y

f(x0), if x 6∈
⋃
t∈Y B(t, ε

2
)

Of course f̃ extends f . Let us suppose x ∈ B(tx,
ε
2
) and y ∈ B(ty,

ε
2
), some

tx, ty ∈ Y . If tx 6= ty then ( ε
2
− d(x, tx)) + ( ε

2
− d(y, ty)) ≤ d(x, y). Then

‖f̃(x)− f̃(y)‖

=
2

ε
‖(d(x, tx)f(x0) + (

ε

2
− d(x, tx))f(tx))− (d(y, ty)f(x0) + (

ε

2
− d(y, ty))f(ty))‖

≤ 2

ε
‖(ε

2
− d(x, tx))(f(tx)− f(x0)) +

ε

2
f(x0)− (

ε

2
− d(y, ty))(f(ty)− f(x0))− ε

2
f(x0)‖

≤ 2

ε
[(
ε

2
− d(x, tx))‖f‖LipD + (

ε

2
− d(y, ty))‖f‖LipD]

≤ 2D

ε
‖f‖Lipd(x, y)

On the other hand, if tx = ty then

‖f̃(x)− f̃(y)‖ =
2

ε
‖d(x, tx)f(x0) + (

ε

2
− d(x, tx))f(tx)− d(y, tx)f(x0)− (

ε

2
− d(y, tx))f(tx)‖

=
2

ε
|d(x, tx)− d(y, tx)|‖f(x0)− f(tx)‖
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≤ 2D

ε
‖f‖Lipd(x, y)

All the other cases are easer.

We shall focus on the following

Theorem 1.14 (Lee-Naor [8]). Let (X, d) be a doubling metric space, Y ⊆ X
and Z be a Banach space. Then every L-Lipschitz function f : X −→ Z
can be extended to a function f̃ : X −→ Z such that ‖f̃‖Lip ≤ K‖f‖Lip.
Furthermore, the extension depends linearly and continuously on f .

Before to go on, let us make some comment. For any pointed metric
space (X, d, x̄) and Banach space Z, we denote by Lip0(X,Z) (omitting for
notational simplicity the dependence on d and x̄) the Banach space of all
Z-valued Lipschitz functions on X which vanish at x̄, equipped with the
natural norm

‖f‖Lip0(X,Z) = sup{‖f(x)− f(y)‖
d(x, y)

: x 6= y in X}.

The Theorem of Lee and Noar precisely states that there exists a bounded
linear operator

T : Lip0(Y, Z) −→ Lip0(X,Z)

such that T (f)|Y = f for every f ∈ Lip0(Y, Z). Such an operator is called
extension operator.

For simplicity, we shall treat the case Z = R, real valued Lipschitz func-
tions.

For all x ∈ X, the Dirac measure δx defines a continuous linear functional
on Lip0(X), defined by 〈f, δx〉 = f(x), with ‖δx‖ ≤ d(x, x̄)

Proposition 1.15. Let (X, d, x̄) be any pointed metric space and let M be a
closed subset with x̄ ∈M . Then the following properties are equivalent:

(a) there exists a bounded linear extension operator

E : Lip0(M) −→ Lip0(X);

(b) there exists a Lipschitz map δ̂ : X −→ Lip0(M)∗ such that the following
diagram commutes

M
δ

↪−→ Lip0(M)∗y δ̂

↗
X
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In addition, for any δ̂ as in (b) one has ‖E‖ = ‖δ̂‖.

Proof. (a)⇒ (b) It is enough to define δ̂ : X −→ Lip0(M)∗ by

δ̂(x) = E∗(δx) ∀x ∈ X.

Let us first observe that δ̂(x) ∈ Lip0(M)∗ for every x ∈ X. Linearity follows
directly by the definition of δ̂. Moreover,

‖δ̂(x)‖Lip0(M)∗ = sup
‖g‖Lip0(M)≤1

〈g, δ̂(x)〉

= sup
‖g‖Lip0(M)≤1

〈E(g), δx〉

≤ ‖E‖d(x, x̄).

Of course, δ̂(x) = δx for every x ∈M . Finally, since ‖Eg‖Lip0(X) ≤ ‖E‖‖g‖Lip0(M)

for all g ∈ Lip0(M), we get

‖δ̂(x)− δ̂(y)‖Lip0(M)∗ = sup
‖g‖Lip0(M)≤1

|〈g, δ̂(x)− δ̂(y)〉|

= sup
‖g‖Lip0(M)≤1

|E(g)(x)− E(g)(y)|

≤ ‖E‖d(x, y).

It follows that
‖δ̂‖ ≤ ‖E‖. (1.3)

(b)⇒ (a) Let us define E : Lip0(M) −→ Lip0(X) by

E(g)(x) = 〈δ̂(x), g〉 ∀x ∈ X, ∀g ∈ Lip0(M).

Of course E is a bounded linear operator. Let us estimate its norm: for
g ∈ Lip0(M) with ‖g‖Lip0 ≤ 1 we have

|E(g)(x)− E(g)(y)| = |〈δ̂(x), g〉 − 〈δ̂(y), g〉|
= |〈δ̂(x)− δ̂(y), g〉|
≤ ‖δ̂(x)− δ̂(y)‖Lip0(M)∗

≤ ‖δ̂‖d(x, y).

Thus
‖E‖ ≤ ‖δ̂‖. (1.4)

Finally, E(g)(x) = 〈δ̂(x), g〉 = 〈δ(x), g〉 = g(x) for all x ∈ M . Therefore, E
is an extension operator and (1.3) and (1.4) give ‖E‖ = ‖δ̂‖.
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An immediate consequence of the previous Proposition is the finite ex-
tension property for Lipschitz maps.

Theorem 1.16. Let (X, d, x̄) be a pointed metric space and let M ⊆ X be a
closed subspace with x̄ ∈M and with the following finite extension Lipschitz
property:

(F) For every F ⊆ M finite with x̄ ∈ F there exists a linear extension
operator

EF : Lip0(F ) −→ Lip0(X)

with ‖EF‖ ≤ C, for some constant independent of F .

Then, there exists a linear extension operator

E : Lip0(M) −→ Lip0(X)

with ‖E‖ ≤ C.

Proof. Firstly, let us notice that if RF : Lip0(M) −→ Lip0(F ) denotes the
restriction operator, since RF is continuous and surjective the dual operator

R∗F : Lip0(F )∗ ↪−→ Lip0(M)∗

is continuous and injective, hence its range is a closed subspace of Lip0(M)∗.
By the previous proposition, we can translate the hypothesis by the fol-

lowing: for every F ⊆ M finite with x̄ ∈ F there exists a Lipschitz map
fF : X −→ Lip0(F )∗ such that the following diagram commutes

F
δ

↪−→ Lip0(F )∗y fF
↗

X

This tells us that

(i) fF (x) = δx for every x ∈ F ;

(ii) ‖fF (x)− fF (y)‖Lip0(F )∗ ≤ Cd(x, y) for every x, y ∈ F .

Still by the previous proposition, we need to build a Lipschitz map f : X −→
Lip0(M)∗ such that the diagram

M
δ

↪−→ Lip0(M)∗y f

↗
X



Lipschitz Analysis 15

commutes.
Let us denote by BF (r) = {x∗ ∈ Lip0(F )∗ : ‖x∗‖Lip0(F )∗ ≤ r} be the

closed ball in Lip0(F )∗ centered at 0 with radius r > 0. Since Lip0(F )∗ is
finite dimensional, each ball BF (r) is a compact set, and then, by the natural
embeddings R∗F , BF (r) can be seen as a compact subset of Lip0(M)∗.

In particular, (ii) implies that

fF ∈
∏
x∈X

BF (Cd(x, x̄)) = B ⊆ (Lip0(M)∗,weak∗)X .

When we partially order the collection F of finite subsets of M by inclusion
we have a net; hence, by the compactness of B in (Lip0(M)∗,weak∗)X , there
exist a cofinal subnet G and f : X −→ Lip0(M)∗ such that

lim
F∈G

fF = f in (Lip0(M)∗,weak∗)X .

Now, by cofinality, for each x ∈ M there exists F ∈ G such that x ∈ F .
Since the convergence is in weak∗ topology, in particular we have pointwise
convergence. Thus (i) implies that

δx = lim
F∈G

fF (x) = f(x).

Similarly, for every x, y ∈ X, by (ii),

‖f(x)− f(y)‖Lip0(M)∗ = lim
F
‖fF (x)− fF (y)‖Lip0(M)∗

≤ Cd(x, y).

Thus, f is Lipschitz and ‖f‖Lip ≤ C.

The previous theorem permit us to assume that Y in Theorem 1.14 is fi-
nite; i.e., Y = {x̄, x1, . . . xn}. For each R > r > 0, let us denote by C(X,R, r)
the largest cardinality of a set N ⊆ X such that for every distinct x, y ∈ N ,
r ≤ d(x, y) ≤ R. Let us note that if λ denotes the doubling constant of X,
then for every ∆ > 0

C(X, 2∆,
∆

4
) ≤ λ4.

Indeed, let N such that ∆
4
≤ d(x, y) ≤ 2∆, for every distinct x, y ∈ N . Then

N is contained in a ball of radius 2∆ which can be covered by λ4 balls of
radius ∆

8
. Since every such ball contains at most one point of N , we see that

|N | ≤ λ4.

Let us recall that N ⊆ Y is said to be a ∆-net if for every x, y ∈ N ,
d(x, y) ≥ ∆ and Y ⊆ ∪y∈NB(y,∆).
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Lemma 1.17. Let ∆ > 0 and M be a ∆-net of Y . Then for each σ random
permutation on M there exists a partition {Cy(σ) : y ∈ M} of Y and a
probability measure µ over the set of all random permutation on M , such
that

(i) diamCy(σ) ≤ 4∆;

(ii) µ
(⋃

y∈M{σ : d(x, Y \ Cy(σ)) ≥ ε∆}
)
≥ 1

2
, for all x ∈ Y ,

where ε = 1
4·64·ln(λ)

.

Proof. Let σ be a random permutation on M and choose R ∈]∆, 2∆] uni-
formly at random. For each y ∈M

Cy(σ) := {x ∈ Y : x ∈ B(y,R) and σ(y) < σ(z) for all z ∈M with x ∈ B(z,R)}.

Clearly, diam(Cy(σ)) ≤ 4∆. Finally, P = {Cy(σ)}y∈M is a partition of
Y because M is a ∆-net and R ≥ ∆. Now, fix a value t ∈ [0,∆] and some
x ∈ Y . Let W = B(x, 2∆ + t) ∩M , and note that m = |W | ≤ C(Y, 6∆,∆).
Arrange the points w1, . . . , wm ∈ W in order of decreasing distance from x,
and let Ik be the interval

[d(x,wk)− t, d(x,wk) + t].

We say that B(x, t) is cut by a cluster Cwk , if Cwk ∩ B(x, t) 6= ∅ but
B(x, t) 6⊆ Cwk . Finally, write Ek for the event that wk is the minimal ele-
ment (according to σ) in W for which Cwk cuts B(x, t). Observe that for every
1 ≤ k ≤ m, Pr[Ek|R ∈ Ik] ≤ 1

k
, since we require that in the uniformly random

permutation induced by σ on {w1, . . . , wm}, wk appears before w1, . . . , wk−1.
Recall that Pr[Ek|R ∈ Ik] is the probability of event Ek given that event
R ∈ Ik has already taken place.

Now

Pr[B(x, t) is cut] ≤
m∑
k=1

Pr[Ek]

=
m∑
k=1

Pr[R ∈ Ik] · Pr[Ek|R ∈ Ik]

≤
m∑
k=1

2t

∆
· 1

k

≤ 2t

∆
(1 + lnm)
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≤ 8t

∆
ln(C(Y, 6∆,∆)).

Setting

t =
∆

64 ln(C(Y, 6∆,∆))

yields the required result; i.e,

Pr[B(x, t) is cut] ≤ 1

8

Finally, note that when B(x, t) is not cut, we have B(x, t) ⊆ C for some
C ∈ P . Therefore,

Pr

[⋃
y∈M

{σ : d(x, Y \ Cy(σ)) ≥ ε∆}

]
≥ Pr

[⋃
y∈M

{σ : B(x, t) ⊆ Cy(σ)}

]
≥ Pr [B(x, t) is not cut]

≥ 1− 1

8

≥ 1

2

For each y ∈ M let γy(σ) be the minimal element of M (with respect to
σ) in Cy(σ).

Now we would like to extend those partition Cy(σ)’s to the whole space
X. For each x ∈ X let us denote by tx ∈ Y the minimum distance element
with respect to Y ; i.e., d(x, tx) = d(x, Y ). Let us denote by Ω the set of all
permutation on M . Now, for each σ ∈ Ω and y ∈M we define

Ĉy(σ) :=

{
Cy(σ)

⋃
{x ∈ X : d(tx, Y \ Cy(σ)) ≥ ε∆

2
and d(x, tx) ≤ ε∆

4
}, if y ∈M

{y}, if y 6∈
⋃
z∈M Ĉz(σ)

and γ̂y(σ) : Ω −→ Y by

γ̂y(σ) =

{
γy(σ), if y ∈M
ty, y 6∈

⋃
z∈M Ĉz(σ).

Let us note that {Ĉy(σ)}y is a partition of whole spaceX and γ̂y is measurable

(in a trivial way!). Let us note that, whenever x, z ∈ Ĉy(σ) we have

d(x, z) ≤ d(x, tx) + d(z, tz) + d(tx, tz)
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≤ ε∆

4
+
ε∆

4
+ diam(Cy(σ))

≤ (4 +
ε

2
)∆.

Let us also observe that, if d(x, Y ) ≤ ε∆
16

then

µ

(⋃
y∈M

{σ : d(x,X \ Ĉy(σ)) ≥ ε∆

16
}

)
≥ 1

2
.

Since d(tx, Y \ Cy(σ)) ≥ ε∆, for some y ∈ M , our goal will be to show that

in this case d(x,X \ Ĉy(σ)) ≥ ε∆
16

. Assume to the contrary that there is some

z ∈ X \ Ĉy(σ) with d(x, z) ≤ ε∆
16

. Observe that

d(tx, tz) ≤ d(x, tx) + d(z, tz) + d(x, z)

≤ d(x, Y ) + (d(z, x) + d(x, Y )) +
ε∆

16

<
ε∆

16
+ 2

ε∆

16
+
ε∆

16

<
ε∆

2

Hence,

d(tz, Y \ Cy(σ)) ≥ d(tx, Y \ Cy(σ))− d(tx, tz) >
ε∆

2
.

Since we also have that

d(z, tz) = d(z, Y ) ≤ d(x, Y ) + d(x, z) ≤ ε∆

4
,

which would implies that z ∈ Ĉy(σ), against the choice of z.

Since all the construction above depends on ∆, we can reformulate it for
∆ = 2n, n ∈ Z.

Proposition 1.18. For every n ∈ Z there exists (Ωn, µn) a probability mea-
sure space, a set of index I,

γni : Ωn −→ Y

a measurable function, and for all ω ∈ Ωn a partition {Γin(ω)}i∈I such that
diam(Γin(ω)) ≤ 2n and if x ∈ X with d(x, Y ) ≤ ε2n then

µ

(⋃
i∈I

{ω : d(x,X \ Γin(ω)) ≥ ε2n}

)
≥ 1

2
.
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Now, we are in position to prove the main result of this section

Proof. (of Theorem 1.14).

Let ϕ : R −→ [0,+∞[ be 2-Lipschitz function with suppϕ ⊆ [1
2
, 4] and

ϕ = 1 on [1, 2] and define

ϕn(x) := ϕ

(
d(x, Y )

ε2n−3

)
.

If on I we consider the counting measure, let (Ω, µ) be the disjoint union of
(I × Ωn)n∈Z. Let us define

γ : Ω −→ Y

by
γ(i, ω) = γin(ω), if i ∈ I and ω ∈ Ωn.

Let g : [0,+∞[−→ [0,+∞[ given by

g(x) =


1, if x ≥ 2

x− 1, if 1 ≤ x ≤ 2

0, if 0 ≤ x ≤ 1.

Finally, let

θnω(x) := g

(
1

ε2n−1
·
∑
i∈I

min{d
(
x,X \ Γin(ω)

)
, 2n}

)
= g(πnω(x)).

Observe that since {Γin(ω)}i∈I is a partition of X, the above sum consist of
only one element.

We are ready to define the main tool of the construction: let

Φ : Ω×X −→ [0,+∞[

Φ(i, ω, x) :=
1

S(x)
θnω(x)ϕn(x) · χΓin(ω)(x),

where

S(x) =
∑
n∈Z

∑
i∈I

ˆ
Ωn

θnω(x)ϕn(x) · χΓin(ω)(x) dµn(ω)

=
∑
n∈Z

ϕn(x)

ˆ
Ωn

θnω(x)dµn(ω).

Important: observe that suppϕn ⊆ {x ∈ X : ε2n−4 ≤ d(x, Y ) ≤ ε2n−4} so
the sum above consists of at most 5 terms.

Of course Φ has the following properties
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(i) Φ(·, ·, x) = 0 if x ∈ Y ;

(ii) ‖Φ(·, ·, x)‖L1(Ω,µ) = 1 if x ∈ X \ Y .

Key: for all x, y ∈ X,∑
n∈Z

∑
i∈I

ˆ
Ωn

d(γ(i, ω), x) |Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω) ≤ 2C

ε
· d(x, y) (1.5)

Fix ω ∈ Ωn and assume that Φ(i, ω, x) 6= Φ(i, ω, y). Then either Φ(i, ω, x) >
0 or Φ(i, ω, y) > 0. In the first case x ∈ Γin(ω). Notice that either d(γ(i, ω),Γin(ω)) =
0 or Γin(ω) = {x} and then γ(i, ω) = tx. In any case,

d(γ(i, ω), x) ≤ d(γ(i, ω),Γin(ω)) + diam(Γin(ω))

≤ d(Y,Γin(ω)) + 2n

= d(x, Y ) + 24 · 2n−4

(since ϕn(x) > 0) ≤ d(x, Y ) +
24

ε
d(x, Y )

≤ 18

ε
d(x, Y )

≤ d(x, y) +
18

ε
max{d(x, Y ), d(y, Y )}.

In the second case, Φ(i, ω, y) > 0, so

d(γ(i, ω), x) ≤ d(γ(i, ω), y) + d(x, y)

≤ d(y, Y ) + diam(Γin(ω)) + d(x, y)

≤ d(y, Y ) + 2n + d(x, y)

≤ d(x, y) +
18

ε
max{d(x, Y ), d(y, Y )}.

Therefore,∑
n∈Z

∑
i∈I

ˆ
Ωn

d(γ(i, ω), x) |Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω)

≤ d(x, y) ·
∑
n∈Z

∑
i∈I

ˆ
Ωn

[Φ(i, ω, x) + Φ(i, ω, y)] dµn(ω)

+
18

ε
max{d(x, Y ), d(y, Y )} ·

∑
n∈Z

∑
i∈I

ˆ
Ωn

|Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω)

= 2d(x, y) +
18

ε
max{d(x, Y ), d(y, Y )} ·

∑
n∈Z

∑
i∈I

ˆ
Ωn

|Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω)
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Thus, to reach (1.5), it is enough to show that∑
n∈Z

∑
i∈I

ˆ
Ωn

|Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω) ≤ C ′ · d(x, y)

max{d(x, Y ), d(y, Y )}
(1.6)

Notice that, if d(x, y) ≥ d({x, y}, Y ) then it is enough to choose any C ′ > 4.
Indeed, d(x, Y ) ≤ d(x, y) + d(y, Y ) ≤ 2d(x, y) and analogously d(y, Y ) ≤
2d(x, y). Hence the right-hand side of (1.6) is greater than 2 while the left-
hand side of (1.6) is at most 2.

Then we can assume that d(x, y) < d({x, y}, Y ). Moreover, we assume as
well that d(x, Y ) ≥ d(y, Y ). Now,∑
n∈Z

∑
i∈I

ˆ
Ωn

|Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω)

=
∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣∣∣θnω(x)ϕn(x)χΓin(ω)(x)S(y)− θnω(y)ϕn(y)χΓin(ω)(y)S(x)

S(x)S(y)

∣∣∣∣ dµn(ω)

≤
∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)
∣∣

S(x)
dµn(ω)

+

(∑
n∈Z

ˆ
Ωn

θnω(y)ϕn(y) dµn(ω)

)
|S(x)− S(y)

S(x)S(y)

≤
∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)
∣∣

S(x)
dµn(ω)

+

(∑
n∈Z

ˆ
Ωn

θnω(y)ϕn(y) dµn(ω)

)
·

·
∑
k∈Z

ˆ
Ωk

∑
i∈I

∣∣∣θnτ (x)ϕk(x)χΓik(τ)(x)− θnτ (y)ϕk(y)χΓik(τ)(y)
∣∣∣

S(x)S(y)
dµk(τ)

=
2

S(x)

∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)
∣∣ dµn(ω).

Let n0 ∈ Z such that d(x,Y )
ε2n0−3 ∈ [1, 2]. Let us denote by πnω(x) =

∑
i∈I min{d (x,X \ Γin(ω)) , 2n}.

S(x) ≥
∑

n: d(x,Y )≤ε2n
ϕn(x)

ˆ
{ω:Ωn: πnω(x)≥ε2n}

g

(
πnω(x)

ε2n−1

)
dµn(ω)

≥ ϕ

(
d(x, Y )

ε2n0−3

)
µn0

(⋃
i∈I

{ω ∈ Ωn0 : d(x, Y \ Γin0
(ω)) ≥ ε2n0}

)
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= µn0

(⋃
i∈I

{ω ∈ Ωn0 : d(x, Y \ Γin0
(ω)) ≥ ε2n0}

)

≥ 1

2

Fix n ∈ Z and ω ∈ Ωn. Assume ϕn(x)+ϕn(y) > 0. In this case {d(x, Y ), d(y, Y )}∩
[ε2n−4, ε2n−1] 6= ∅, so in particular d(y, Y ) ≤ ε2n−1. Since we are assuming
d(x, y) < d(y, Y ), then

d(x, Y ) ≤ d(x, y) + d(y, Y ) ≤ 2d(y, Y ) ≤ ε2n.

If x, y ∈ Γjn(ω) for soem j ∈ I, since g is 1-Lipschitz,∑
i∈I

|θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)|

=

∣∣∣∣θnω(x)ϕ

(
d(x, Y )

ε2n−3

)
− θnω(y)ϕ

(
d(y, Y )

ε2n−3

)∣∣∣∣
≤ ϕ

(
d(x, Y )

ε2n−3

)
|θnω(x)− θnω(y)|+ θnω(y)

∣∣∣∣ϕ(d(x, Y )

ε2n−3

)
− ϕ

(
d(y, Y )

ε2n−3

)∣∣∣∣
≤ ϕ

(
d(x, Y )

ε2n−3

)
|πnω(x)− πnω(y)|+ θnω(y)

∣∣∣∣ϕ(d(x, Y )

ε2n−3

)
− ϕ

(
d(y, Y )

ε2n−3

)∣∣∣∣
≤ d(x, y) + θnω(y)

16d(x, y)

ε2n

≤ d(x, y) +
16d(x, y)

ε2n

≤ 6d(x, y)

ε2n

≤ 6d(x, y)

d(x, Y )

On the other hand, if there exist distinct i, j ∈ I such that x ∈ Γin(ω) and
y ∈ Γjn(ω), then using the fact that πnω(x), πnω(y) ≤ d(x, y), we get∑

i∈I

|θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)|

≤ g

(
πnω(x)

ε2n−1

)
+ g

(
πnω(y)

ε2n−1

)
≤ πnω(x)

ε2n−1
+
πnω(y)

ε2n−1
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≤ 4d(x, y)

d(x, Y )

Putting all together,∑
n∈Z

∑
i∈I

ˆ
Ωn

|Φ(i, ω, x)− Φ(i, ω, y)| dµn(ω)

≤ 2

S(x)

∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)
∣∣ dµn(ω)

≤
∑
n∈Z

ˆ
Ωn

∑
i∈I

∣∣θnω(x)ϕn(x)χΓin(ω)(x)− θnω(y)ϕn(y)χΓin(ω)(y)
∣∣ dµn(ω)

≤
∑

n:{x,y}∩suppϕn 6=∅

ˆ
Ωn

6d(x, y)

d(x, Y )
dµn

≤ 10 · 6 · d(x, y)

d(x, Y )

where we have used the fact that, for every z ∈ X, |{n : z ∈ suppϕn}| ≤ 5,
which concludes (1.6).

Now, we are ready to define the extension operator. Let

T : Lip0(Y ) −→ Lip0(X)

defined by

T (f)(x) =


´

Ω
f(γ(ω))Φ(ω, x) dµ(ω), if x ∈ X \ Y

f(x), if x ∈ Y
(1.7)

Let us collect some information. For every y ∈ Y ,
ˆ

Ω

|f(γ(ω))|Φ(ω, x) dµ(ω)

≤
ˆ

Ω

[|f(γ(ω))− f(x)|+ |f(x)|]Φ(ω, x) dµ(ω)

(by (i) and (ii) above) ≤ ‖f‖Lip
ˆ

Ω

d(γ(ω), x)|Φ(ω, x)− Φ(ω, y)| dµ(ω) + |f(y)|

(by (1.5) above) ≤ ‖f‖LipCd(x, y) + |f(y)| <∞.

Therefore T is well defined. Of course T (f) extends f . Let us show that T (f)
is Lipschitz. Let us consider x, y ∈ X such that al least one of them not in
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Y ; i.e., y ∈ X \ Y . Take z ∈ Y such that d(x, z) = d(x, Y ) in case x ∈ X \ Y
otherwise z = x, and observe that

T (f)(y)− T (f)(x) =

ˆ
Ω

[f(γ(ω))− f(z)] · [Φ(ω, y)− Φ(ω, x)] dµ(ω)

Thus

|T (f)(y)− T (f)(x)| ≤ ‖f‖Lip
ˆ

Ω

d(γ(ω), z)|Φ(ω, y)− Φ(ω, x)| dµ(ω)

≤ ‖f‖Lip
ˆ

Ω

[d(γ(ω), x) + d(x, z)]|Φ(ω, y)− Φ(ω, x)| dµ(ω)

(γ(ω) ∈ Y ) ≤ ‖f‖Lip
ˆ

Ω

[d(γ(ω), x) + d(x, γ(ω))]|Φ(ω, y)− Φ(ω, x)| dµ(ω)

= 2‖f‖Lip
ˆ

Ω

d(γ(ω), x)|Φ(ω, y)− Φ(ω, x)| dµ(ω)

(by (1.5)) ≤ 2C‖f‖Lipd(x, y).



Chapter 2

Differentiability

Recall that a function f : Ω −→ Rm, where Ω ⊆ Rn is open, is differentiable
at a ∈ Ω if there exists a linear map L : Rn −→ Rm such that

lim
x→a

‖f(x)− f(a)− L(x− a)‖
‖x− a‖

= 0. (2.1)

If such a linear map L exists, it is unique, called the derivative of f at a, and
denoted by Df(a). We also note that f = (f1, . . . , fm) is differentiable at a
if and only if each of the coordinate functions fi are differentiable at a.

To analyze (2.3) more carefully, suppose f : Ω −→ R is a real-valued
function, differentiable at a point a ∈ Ω. For t ∈ R, t 6= 0, consider the
functions

ft(x) :=
f(a+ tx)− f(a)

t
,

which are defined for t small enough. Then

lim
t→0
|ft(x)− L(x)| = 0

uniformly in x ∈ Bn. This procedure can be reversed and we conclude that
a function f is differentiable at a point a if and only if the functions (ft)t
converges uniformly in Bn to a linear map as t→ 0.

Assume now that f : Ω −→ R is L-Lipschitz, and that a ∈ Ω. Then
the family (ft)t consists of uniformly bounded L-Lipschitz functions on Bn
(for small enough t). The Arzelá-Ascoli theorem guarantees that there is a
subsequence of the sequence (ft)t that converges uniformly to an L-Lipschitz
function on Bn. What Rademacher’s theorem claims, in effect, is that for
almost all points a in Ω this limit is independent of the subsequence, and
that the limit function is linear.

Before to go on, we need to recall some classical covering theorem.

25
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Theorem 2.1. Every family F of balls of uniformly bounded diameter in a
metric space X contains a disjointed subfamily G such that⋃

B∈F

B ⊆
⋃
B∈G

5B.

Proof. Let Ω denote the set consisting of all disjointed subfamilies F̃ of F ,
partially ordered by inclusion, with the following property: if a ball B from
F meets some ball from F̃ , then it meets one whose radius is at least half the
radius of B. Note that Ω is nonempty because the one ball family F̃ = {B}
is in Ω whenever B ∈ F has radius close to the supremum one.

Then, if C ⊆ Ω is a chain, it is easy to see that F̃0 =
⋃
F̃∈C F̃ belongs to

Ω, so there is a maximal element G in Ω. By construction, G is disjointed. If
there is a ball B ∈ F that does not meet any ball from G, then pick a ball
B0 from F such that the radius of B0 is larger than half of the radius of any
other ball that does not meet the balls from G. Then, if a ball B from F
meets a ball from the collection G ′ = G ∪ {B0}, by construction it meets one
whose radius is at least half that of B, showing that G ′ belongs to Ω. But
this contradicts the maximality of G. Thus, every ball B = B(x, r) from F
meets a ball B′ = B(x′, r′) from G so that r ≤ 2r′, and the triangle inequality
shows that B ⊆ 5B′.

Theorem 2.2 (Vitali covering). Let A be a subset in a doubling metric
measure space (X, d, µ) and let F be a collection of closed balls centered at
A such that

(a) A ⊆
⋃
B∈F B,

(b) For each point x ∈ A and ε > 0 there is B ∈ F that contains x and
radiusB < ε.

Then for each ε > 0 there is a finite disjoint subcollection {Bk}nk=1 of F for
which

µ∗

(
A \

n⋃
k=1

Bk

)
< ε,

where µ∗ denotes the outer measure associate to µ.

Proof. Assume first that A is bounded. Next, we may assume that the balls
in F have uniformly bounded radii; in particular, by the Theorem 2.1, we find
a disjointed subcollection G of F such that A is contained in

⋃
G 5B. Since⋃

G B is contained in some fixed ball and µ is finite and strictly positive on
balls, the collection G is necessarily countable; i.e., G = {Bn, n ∈ N}.
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We claim,

(∗) A \
n⋃
i=1

Bi ⊆
∞⋃

k=n+1

5Bk, for each n ∈ N.

Indeed, let a ∈ A \
⋃N
i=1Bi. Since the balls in F are closed we can find

B ∈ F such that a ∈ B and B ∩ (∪Ni=1Bi) = ∅. Therefore, by property of G

a ∈ B ⊆
∞⋃

k=N+1

5Bk.

Since Bi’s are disjoints, by σ-additivity of the measure and (∗), it is enough
to choose N ∈ N such that

µ∗

(
A \

N⋃
k=1

Bk

)
≤ µ(

∞⋃
k=N+1

5Bk)

=
∞∑

k=N+1

µ(Bk)

< ε.

The case A is unbounded is easy.

Theorem 2.3 (Lebesgue). Let f : (a, b) −→ R be a monotone function.
Then f is differentiable at almost every point in (a, b).

Proof. Of course, we can assume that the interval (a, b) is bounded and f is
increasing. Let

D+f(x) := lim
h→0

[
sup

0<|t|<h

f(x+ t)− f(x)

h

]

and

D−f(x) := lim
h→0

[
inf

0<|t|<h

f(x+ t)− f(x)

h

]
.

First, let us note that, for each α > 0

λ∗({x ∈ (a, b) : D+f(x) ≥ α}) ≤ 1

α
[f(b)− f(a)].

Indeed, let Eα = {x ∈ (a, b) : D+f(x) ≥ α}) and 0 < α′ < α. Let F be the
collection of all closed, bounded intervals [c, d] contained in (a, b) such that
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f(d) − f(c) ≥ α′(d − c). Since D+f(x) ≥ α on Eα, we get that F satisfies
the hypothesis of Vitaly’s covering theorem above. Then there exists a finite
disjoint subcollection {[ck, dk]}Nk=1 of F for which

λ∗(Eα \ ∪k∈N[ck, dk]) < ε.

Since Eα ⊆ (∪k∈N[ck, dk]) ∪ (Eα \ ∪k∈N[ck, dk]), by the finite subadditivity of
outer measure, we have

λ∗(Eα) ≤
N∑
i=1

(di − ci) + ε

≤ 1

α′

N∑
i=1

(f(di)− f(ci)) + ε.

However, the function f is increasing on (a, b) and {[ck, dk]}Nk=1 are disjoint
intervals. Therefore, for each ε > 0 and 0 < α′ < α, we have

λ∗(Eα) ≤ 1

α′
(f(b)− f(a)) + ε.

Hence,

λ∗({x ∈ (a, b) : D+f(x) =∞}) = 0.

For what we said before, it is enough to show that

λ∗({x ∈ (a, b) : D+f(x) > D−f(x)}) = 0,

or

λ∗({x ∈ (a, b) : D+f(x) > α > β > D−f(x)}) = 0, for all α, β ∈ Q+.

Let us call the above set Eα,β. Fix ε > 0 and consider O ⊆ (a, b) open
such that λ(O) ≤ λ∗(Eα,β) + ε. Let I the collection of all closed intervals

I = {[c, d] ⊆ O, f(d)− f(c) < β(d− c)}.

Since D−f(x) < β on Eα,β, it is easy to see that I verifies the hypothesis
of Vitaly’s covering theorem above. Then there exists a finite collection of
mutually disjoint closed intervals [c1, d1], . . . , [cn, dn] ∈ I, such that

λ∗

(
Eα,β \

n⋃
i=1

[ci, di]

)
< ε.
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Now,

n∑
i=1

[f(di)− f(ci)] < β
n∑
i=1

[di − ci]

≤ βλ(O)

≤ β[λ∗(Eα,β) + ε].

Moreover, Eα,β∩ [ci, di] ⊆ {x ∈ [ci, di] : D+f(x) > α}, for i = 1, . . . , n. Thus,

λ∗(Eα,β ∩ [ci, di]) ≤ λ∗({x ∈ (ci, di) : D+f(x) > α})

≤ 1

α
[f(di)− f(ci)]

Finally, write Eα,β = (Eα,β \
⋃n
i=1[ci, di]) ∪ (

⋃n
i=1Eα,β ∩ [ci, di]), to have

λ∗(Eα,β) ≤ ε+
n∑
i=1

λ(Eα,β ∩ [ci, di])

≤ ε+
1

α

n∑
i=1

[f(di)− f(ci)]

≤ ε+
β

α
(λ∗(Eα,β) + ε).

Since β < α, we get λ∗(Eα,β) = 0. The proof is completed.

Corollary 2.4. Let f : (a, b) −→ R be a Lipschitz function. Then f is
differentiable at almost every point in (a, b).

Proof. It is enough to observe that f can be written as

f(x) = Pf (x)− (Nf (x)− f(a))

where

Pf (x) = sup
N∑
i=1

[f(xi+1)− f(xi)]
+,

Nf (x) = sup
N∑
i=1

[f(xi+1)− f(xi)]
−,

and both supremum are taken over all finite sequences a = x1 < · · · <
xN+1 = x. Moreover the functions Pf and Nf − f(a) are both increasing.
Then one concludes by the previous theorem.
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2.0.1 Rademacher’s theorem

Now we are in position to state the main result of this section.

Theorem 2.5 (Rademacher). Let Ω ⊆ Rn be open, and let f : Ω −→ Rm be
Lipschitz. Then f is differentiable at almost every point in Ω.

Proof. By using the extension theorem of the previous chapter, we may as-
sume for simplicity and without loss of generality that f : Rn −→ R is
Lipschitz; m = 1 and Ω = Rn.

The proof splits into three parts. First the one-dimensional result is used
to conclude that the partial derivatives ( ∂f

∂xi
) of f exists almost everywhere.

This gives us a candidate for the total derivative, namely the (almost every-
where defined) formal gradient

∇f(x) = (
∂f

∂x1

, . . . ,
∂f

∂xn
) (2.2)

Next, it is shown that all directional derivatives exist almost everywhere, and
can be given in terms of the gradient. Finally, by using the fact that there
are only ”countably many directions” in Rn, the total derivative is shown to
exist; it is only in this last step that the Lipschitz condition is seriously used.

We will now carry out these steps. For every x, v ∈ Rn, with ‖v‖ = 1, the
function

fx,v(t) := f(x+ tv), t ∈ R

is Lipschitz as a one variable function, then by Lebesgue theorem it is differ-
entiable at almost every t ∈ R. Let

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
(2.3)

of course when the limit exists. Let Av = {x : Dvf(x) exists}. Since f is
continuous, it can be seen easily that Av is measurable. Indeed,

D+f(x) = lim
h→0+

sup
0<|t|<h
t rational

f(x+ tv)− f(x)

t

is Borel measurable, similarly for D−f .

For each y ∈ v⊥, let us decompose Rn = Rv ⊕ v⊥. The intersection of Acv
with the line parallel to R ·v and passing through y has one dimensional mea-
sure zero for what we said before (Theorem 2.4). Then, by Fubini’s theorem
the set Acv has measure zero. In other words, each directional derivative (2.3)
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exists almost everywhere. In particular, when v = ei, the i-th vector of the
basis of Rn, ∂f

∂xi
exists almost everywhere and then ∇f(x) exists at almost

every x ∈ Rn.

Claim: for every v ∈ Rn we have

Dvf(x) = v · ∇f(x), for almost every x ∈ Rn. (2.4)

Let us fix v = (v1, . . . , vn) ∈ Rn and let g ∈ C∞0 (Rn) be a fixed test
function. Then

ˆ
Rn
Dvf(x)g(x)dλ(x) =

ˆ
Rn

lim
t→0

f(x+ tv)− f(x)

t
g(x)dλ(x)

(dominate convergence) = lim
t→0

ˆ
Rn

f(x+ tv)− f(x)

t
g(x)dλ(x)

(change of variables) = lim
t→0

ˆ
Rn
−f(x)

g(x)− g(x− tv)

t
dλ(x)

(dominate convergence) = −
ˆ
Rn
f(x) lim

t→0

g(x)− g(x− tv)

t
dλ(x)

= −
ˆ
Rn
f(x)Dvg(x)dλ(x)

= −
n∑
i=1

vi

ˆ
Rn
f(x)

∂g

∂xi
(x)dλ(x)

(integration by parts) =
n∑
i=1

vi

ˆ
Rn

∂f

∂xi
(x)g(x)dλ(x)

=

ˆ
Rn
v · ∇f(x)g(x)dλ(x)

Notice that the integration by part step is used on almost every line parallel
to the coordinate axes, which is possible by the fact that f is Lipschitz and
Fubini theorem.

Now, let (vk)k be a dense in the unite sphere of Rn and define

Ak = {x ∈ Rn, Dvkf(x) exists, ∇f(x) exists, and Dvkf(x) = vk · ∇f(x)}

For what we have proved, we already know that Ack has measure zero and
so does Ac, where A = ∩kAk. We claim that f is differentiable at all x ∈ A.
More precisely, we claim that for all x ∈ A we have

f(x+ w)− f(x) = w · ∇f(x) + o(‖w‖).
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Indeed, for w 6= 0, let

u =
w

‖w‖
,

so that
w = ‖w‖u.

Hence,∣∣∣∣ [f(x+ w)− f(x)]− w · ∇f(x)

‖w‖

∣∣∣∣ =

∣∣∣∣ [f(x+ ‖w‖u)− f(x)]− ‖w‖u · ∇f(x)

‖w‖

∣∣∣∣
≤
∣∣∣∣ [f(x+ ‖w‖vi)− f(x)]− ‖w‖vi · ∇f(x)

‖w‖

∣∣∣∣
+

∣∣∣∣f(x+ ‖w‖u)− f(x+ ‖w‖vi)
‖w‖

∣∣∣∣
+ |(u− vi) · ∇f(x)|

(since x ∈ A for ‖w‖ small) ≤ 1

3
ε

(by Lipschitz condition) + L‖u− vi‖
(by linearity) + C‖u− vi‖

≤ ε.

In the last inequality, since u lives in the unite sphere, we have used the
density to pick i ∈ N.

This completes the proof of Rademacher’s.

There is a generalization of Rademacher’s theorem. Let us recall the point-
wise Lipschitz constant of a function f : A −→ Rm, A ⊆ Rn:

Lipf(x) := lim
y→x

sup
y∈A

‖f(x)− f(y)‖
‖x− y‖

Theorem 2.6 (Stepanov). Let Ω ⊆ Rn be open, and let f : Ω −→ Rm be a
function. Then f is differentiable almost everywhere in the set

L(f) = {x ∈ Ω : Lipf(x) <∞}.

Proof. We may assume that m = 1. Let {B1, B2, . . . } be the countable col-
lection of all balls contained in Ω such that each Bi has rational center and
radius, and that f |Bi is bounded. In particular, this collection covers L(f).
Define

ui(x) := inf{u(x) : u is i-Lipschitz with u ≥ f on Bi}
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and
vi(x) := sup{v(x) : v is i-Lipschitz with v ≤ f on Bi}.

By Lemma 1.2, ui and vi are i-Lipschitz and vi ≤ f |Bi ≤ ui. It is clear
that f is differentiable at every point a, where for some i both ui and vi are
differentiable with vi(a) = ui(a). We claim that almost every point in L(f)
is such a point. By Rademacher’s theorem, the set

Z =
∞⋃
i=1

{x ∈ Bi : either ui or vi is not differentiable at x}

has measure zero. If a ∈ L(f) \ Z, then there is a radius r > 0 such that

|f(a)− f(x)| ≤M‖x− a‖, ∀x ∈ B(a, r),

for some M independent of x. Clearly there is an index i > M such that
a ∈ Bi ⊆ B(a, r). Since f(a)− i‖x−a‖ is i-Lipschitz on Bi with f(a)− i‖x−
a‖ ≤ f(x) and vi is the supremum of such functions, then we have

f(a)− i‖a− x‖ ≤ vi(x) ≤ ui(x) ≤ f(a) + i‖a− x‖

for x ∈ Bi, which gives the claim.

A more abstract version of Rademacher’s theorem has been done by
Cheeger [5], where Lipschitz functions in certain measure metric spaces are
considered.

As a consequence of Rademacher’s theorem we have that, given a Lips-
chitz function f : Ω −→ Rm, Ω ⊆ Rn open, the set of all points at which f is
not differentiable has measure zero. For many years it was open the following

Question 2.7. Let A ⊆ Ω be a Lebesgue zero-measure. It is always possible
to find f : Ω −→ Rm such that the set of all points at which f is not
differentiable is contained in A?

The question was solved negatively by D. Preiss [10], given a counterex-
ample in case n = 2 and m = 1. Recently it has been realized that this
phenomena is strictly connected by the dimensions m,n. In [2] is has been
shown that any Lebesgue zero-measure A in Rn it is contained in the set
of all points at which f is not differentiable, for some Lipschitz function
f : Rn −→ Rn. On the other hand, D. Preiss, G. Speight [11] have proved
that for any m < n the exists a Lebegue zero-measure A ⊆ Rn such that
every Lipschitz function f : Rn −→ Rm is differentiable at some point of A.
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Chapter 3

An intermission: Γ-convergence

The Γ-convergence was introduced by De Giorgi in the early 1970s, it has
gained an undiscussed role as the most flexible and natural notion of conver-
gence for variational problems, and is now been widely used also outside the
field of the Calculus of Variations and of Partial Differential Equations. We
report just a quick glance, recommending the book [4].

Definition 3.1. Let (X, d) be a metric space and let Fh : X −→ [−∞,+∞].
We say that Fh Γ-converge to F : X −→ [−∞,+∞] if:

(i) For every sequence (uh)h ⊆ X convergent to u ∈ X we have

F (u) ≤ lim inf
h→∞

Fh(uh);

(ii) For all u ∈ X there exists a sequence (uh)h ⊆ X converging to u such
that

F (u) ≥ lim sup
h→∞

Fh(uh).

Of course, sequence in (ii) satisfies limh→∞ Fh(uh) = F (u).

Proposition 3.2. If (X, d) is separable, any sequence of functionals Fh :
X −→ [−∞,+∞] admits a Γ-convergent subsequence.

Proof. The proof use the compactness of [−∞,+∞], the Aleksandrov com-
pactification of R. Let (Uk)k∈N be a countable basis for the topology of X.
By compactness of [−∞,+∞], there exists an increasing sequence of integers
(σ0

j )j such that

lim
j→∞

inf
y∈U0

Fσ0
j
(y)

35
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exists, and for all k ≥ 1 we define (σkj )j as any subsequence of (σk−1
j )j along

which the limit
lim
k→∞

inf
y∈Uk

Fσkj (y)

exists. By diagonal argument, jk = σkk , we have that the limit

lim
k→∞

inf
y∈Ul

Fjk(y)

exists for all l ∈ N. For each x ∈ X let

F (x) := sup
l∈N
x∈Ul

lim
k→∞

inf
y∈Ul

Fjk(y).

Then Fjk Γ-converges to F .

Let V be a normed and let ω : [0 +∞[−→ [0 +∞[ be a continuous, non-
decreasing and positive with ω > 0 on ]0+∞[. We say that a 1-homogeneous
function N : V −→ [0 +∞[ is uniformly convex modulus ω if

N (u) = N (v) = 1 ⇒ N
(
u+ v

2

)
≤ 1− ω(N (u− v))

for all u, v ∈ V .

Proposition 3.3. Let Nh be a sequence of 1-homogeneous uniformly convex
functionals with uniformly modulus ω. If Nh Γ-converges to some functional
N , then N is 1-homogeneous uniformly convex modulus ω.

Proof. That N is 1-homogeneous is easy. Let u, v ∈ V such that N (u) =
N (v) = 1. By (ii), let (uh)h and (vh)h convergint to u and v respectively,
such that limh→∞Nh(uh) = 1 and limh→∞Nh(vh) = 1. Therefore, if we
denote by

u′h = uh/Nh(uh) and v′h = vh/Nh(vh),
we get Nh(u′h) = Nh(v′h) = 1 (use 1-homogenuity). By assumption,

Nh
(
u′h + v′h

2

)
+ ω(Nh(u′h − v′h)) ≤ 1.

Since still (u′h)h and (v′h) converges to u and v respectively, we get

N
(
u+ v

2

)
+ ω(N (u− v)) ≤ lim inf

h→∞
Nh
(
u′h + v′h

2

)
+ ω

(
lim inf
h→∞

Nh(u′h − v′h)
)

≤ lim inf
h→∞

(
Nh
(
u′h + v′h

2

)
+ ω(Nh(u′h − v′h)

)
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≤ 1.

Where we have used (i), the monotonicity and continuity of ω and the su-
peradditivity of lim inf.
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Chapter 4

Sobolev Spaces

Let1 ≤ p < ∞, Ω ⊆ Rn and let u ∈ Lp(Ω). Then u is said to belong to the
Sobolev space W 1,p(Ω) if there exists, for each i = 1, . . . , n, a function vi ∈
Lp(Ω) such that the distributional ith partial derivative of u is determined
by vi via integration; that is,

ˆ
Ω

viϕ dx = −
ˆ

Ω

u
∂ϕ

∂xi
dx, for each ϕ ∈ C∞0 (Ω).

It is easy to see that such a function vi, if it exists, is unique as an Lp-function,
and we set

∂iu := vi.

The functions ∂iu a priori have has nothing to do with the partial derivative
of u, they are usually called distributional partial derivatives of u. The space
W 1,p(Ω) became a Banach space equipped with the norm

‖u‖W 1,p = ‖u‖Lp + ‖∇u‖Lp ,

where ∇u = (∂1u, . . . , ∂nu) is the distributional gradient of u.

We recall the standard approximation procedure. If η ∈ C∞0 (Rn) is a
function with ˆ

Rn
η(x) dx = 1,

the one defines the mollifier function,

uε(x) := u ∗ ηε(x) =

ˆ
Rn
u(y)ηε(x− y) dy,

where
ηε(x) := ε−nη(

x

ε
),

39
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is C∞-smooth function, and uε → u in Lp(Ω), if u ∈ Lp(Ω) and 1 ≤ p <∞.
Notice that to integrate over Rn in the definition of uε, we set u to be zero
outside Ω.

We also have that uε → u locally uniformly, if u is continuous. Moreover,

∂iuε = u ∗ ∂iηε = ∂iu ∗ ηε,

is u ∈ W 1,p(Ω). It follows that smooth functions are dense in the Sobolev
space W 1,p(Ω) for 1 ≤ p <∞.

Essentially, W 1,∞(Ω) consists of Lipschitz functions.

Theorem 4.1. The space W 1,∞(Ω) consists of those bounded functions on
Ω that are locally L-Lipschitz (for some L depending on the function). In
particular, if Ω is convex, then W 1,∞(Ω) consists of all bounded Lipschitz
functions on Ω.

Proof. Note that the second claim follows from the first and the fact that a
locally L-Lipschitz in a convex set is globally L-Lipschitz.

Assume that u : Ω −→ R is locally L-Lipschitz, for some L. Thus u is
Lipschitz on each line that is parallel to a coordinate axis. By using integra-
tion by parts on such a line, and then Fubini’s theorem (see proof of Theorem
2.5), we find that

ˆ
Ω

∂u

∂xi
η(x) dx = −

ˆ
Ω

u(x)
∂η

∂xi
(x) dx, for each η ∈ C∞0 (Ω), and i = 1, . . . , n.

This proves that the almost everywhere existing classical gradient of u is the
distributional gradient as well. Moreover, ‖∇u‖∞ ≤ L.

Next, assume that u ∈ W 1,∞(Ω). Fix a ball B with compact closure in
Ω. The convolutions uε converge to u pointwise almost everywhere in B.
Moreover, we have that

‖∇uε‖∞,B ≤ ‖∇u‖∞ <∞, for ε small enough.

On the other hand, the function uε are smooth, so that

uε(a)− uε(b) =

ˆ 1

0

∇uε(b+ t(a− b)) · (a− b) dt,

and consequently,

|uε(a)− uε(b)| ≤ ‖∇u‖∞‖a− b‖,
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whenever a, b ∈ B. By letting ε→ 0 we find

|u(a)− u(b)| ≤ ‖∇u‖∞‖a− b‖,

for a, b outside a set of measure zero in B. It can be proved that the above
inequality holds everywhere in B.

Although Sobolev functions can exhibit rather singular behavior, there is
some regularity beneath the rough surface.

Theorem 4.2. Let u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then

Ω =
∞⋃
i=1

Ei ∪ Z,

where Ei are measurable sets such that u|Ei is i-Lipschitz, and Z has measure
zero.

4.0.1 Cheeger-Sobolev space

The fundamental theorem of calculus gives global information about a func-
tion after integrating its derivative. There are important several variable
versions of this phenomenon; these are the various Sobolev-Poincaré inequal-
ities.

Let u be a smooth real-valued function on Rn. Fix two points x, y ∈ Rn.
We can apply the fundamental theorem of calculus on the line segment [x, y]
connecting x and y, and obtain from the chain rule that (as in the previous
proof)

u(y)− u(x) =

ˆ 1

0

∇u(ty + (1− t)x) · (y − x) dt,

Inserting absolute value, it yields the estimate

|u(y)− u(x)| ≤
ˆ

[x,y]

|∇u| ds (4.1)

for the oscillation of the function at the end points in terms of a scalar line
integral. The above reasoning holds not only for the straight line segment
from x to y but for every rectifiable path γ joining the two points; we have
the estimate

|u(y)− u(x)| ≤
ˆ
γ

|∇u| ds (4.2)

for each such γ.
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Let Γ = {γ} be a family of rectifiable curves in Rn, where a curve in
Rn is a continuous map γ : [a, b] −→ Rn, and a curve is rectifiable if it
is (componentwise) of bounded variation. A Borel measurable function ρ :
Rn −→ [0,+∞] is said to be an admissible function, or density, for Γ if

ˆ
γ

ρ ds ≥ 1, for all γ ∈ Γ.

The p-modulus of Γ is defined as

modp(Γ) = inf

ˆ
Rn
ρp dx (4.3)

where the infimum is taken over all admissible functions ρ. A family Γ is said
to be p-exceptional if modp(Γ) = 0. If a property of curves holds outside a
p-exceptional family, then it is said to hold on p-almost every curve.

Proposition 4.3. A family Γ of curves in Rn is p-exceptional if and only if
there exists a Borel function ρ : Rn −→ [0,∞] such that ρ ∈ Lp(Rn) and

ˆ
γ

ρ ds =∞, for each locally rectifiable γ ∈ Γ.

Proof. Easy.

Lemma 4.4 (Fuglede’s lemma). If a sequence of Borel functions (gk)k con-
verges in Lp(Rn) to a Borel function g, then there is a subsequence (gkj)j
such that ˆ

γ

gkj ds→
ˆ
γ

g ds,

for p-almost every curve γ in Rn.

Proof. We may assume that g = 0 and pick a subsequence (gkj)j such that

‖gkj‖Lp ≤ 2−(p+1)j. Let Γ be the family of locally rectifiable curves γ in Rn

for which the statement

lim
j→∞

ˆ
γ

gkj ds = 0

fails to hold, and let Γj be the family of all locally rectifiable curves γ for
which ˆ

γ

|gkj | ds ≥ 2−j.

Then on the one hand

Γ ⊆
∞⋃
j=k

Γj
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for all k ≥ 1. On the other hand, 2j|gkj | is admissible for Γj, for each j, so
that

Modp(Γj) ≤ 2jp
ˆ
Rn
|gkj |p dx

≤ 2−j

Consequently, we have that

Modp(Γ) ≤
∞∑
j=k

Modp(Γj) ≤ 2−k+1

for each k ≥ 1, whence Modp(Γ) = 0 and the lemma is proved.

The following gives an alternative description of Sobolev functions in Rn.

Theorem 4.5. A function u ∈ Lp(Rn) has a representative in W 1,p(Rn) if
and only if there exists a Borel function ρ ∈ Lp(Rn) such that the inequality

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

ρ ds (4.4)

holds for p-almost every curve γ : [a, b] −→ Rn.

Actually, one can realize that distributional gradient |∇u| is the (almost
everywhere) smallest function ρ that satisfies (4.4) for p-almost every curve
γ. It follows that the norm in W 1,p(Rn) can be defined as

‖u‖W 1,p = ‖u‖Lp + inf ‖ρ‖Lp

where the infimum is taken over all Borel functions ρ satisfying (4.4) for
p-almost every curve γ.

This characterization of Sobolev functions requires no smooth structure
of the underlying space. One uses the metric structure for the line integration
and measure for the modulus. This lead is followed when Sobolev spaces in
arbitrary metric measure spaces.

Let (X, d) be a metric space. Every rectifiable curve γ : [a, b] −→ X has
an arc length parametrization

γ0 : [0, length(γ)] −→ X

and we define, for any Borel function ρ : X −→ [0,+∞],
ˆ
γ

ρ ds :=

ˆ length(γ)

0

ρ(γ0(t)) dt.

In particular, the definition and basic properties of modulus as before can be
transferred over to general metric measure spaces (X, d).
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Definition 4.6. A Borel function ρ : X −→ [0,+∞] is said to be an upper
gradient of a function u : X −→ R if

|u(a)− u(b)| ≤
ˆ
γ

ρ ds (4.5)

whenever a, b ∈ X and γ is a rectifiable curve in X with end points a and b.

As trivial examples, we note that ρ = ∞ is an upper gradient of every
function.

Definition 4.7. Let X = (X, d, µ) be a metric measure space and let 1 ≤ p <
∞. A Borel function ρ : X −→ [0,∞] is said to be a p-weak upper gradient
of a function u : X −→ R if the inequality in (4.5) holds for p-almost every
curve γ in X.

Let us observe that despite that upper gradient can be define on every
metric space, for the p-weak upper gradient we need a Borel measure µ on
X such that the definition (4.3) makes sense on (X, d). However, it turns
out that that every p-integrable p-weak upper gradient of a function can be
approximated in Lp(X,µ) by upper gradients.

Proposition 4.8. Suppose that a function u : X −→ R has a p-integrable p-
weak upper gradient. Then there exists a minimal p-weak upper gradient
ρu characterized by the following two properties:

(i) ρu is a p-integrable p-weak upper gradient of u;

(ii) if ρ is another p-integrable p-weak upper gradient of u, then ρu ≤ ρ
almost everywhere.

In particular, ‖ρu‖Lp = inf ‖ρ‖Lp where the infimum is taken over all p-weak
upper gradient ρ of u in Lp(X,µ).

Proof. First one proves (we omit the details) that p-integrable p-weak upper
gradients form a lattice in the sense that if τ and σ are two p-integrable p-
weak upper gradients of a given function, then so is min{τ, σ}. Consequently,
any sequence (ρi)i of p-weak upper gradients of a given function u satisfying

lim
i
‖ρi‖Lp = inf ‖ρ‖Lp

where the infimum is taken over all p-weak upper gradients ρ of u, can be
chosen to be pointwise decreasing:

ρ1 ≥ ρ2 ≥ . . . .
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Clearly, then, (ρi)i converges in Lp(X,µ) to a Borel function ρu whose Lp-
norm assumes the above infimum. By Fuglede’s Lemma 4.4, ρu is a p-weak
upper gradient of u. It is also clear from the lattice property of upper gradi-
ents that ρu is minimal as asserted.

Definition 4.9. Consider the vector space W̃ 1,p(X) consisting of all func-
tions u : X −→ R such that u is in Lp(X) and there exists an upper gradientρ

of u in Lp(X). Then we can define a seminorm in W̃ 1,p(X) by

‖u‖W 1,p := ‖u‖Lp + ‖ρu‖Lp

where ρu is the minimal p-weak upper gradient of u. The Cheeger-Sobolev
space W 1,p(X) is the space

W 1,p(X) := W̃ 1,p(X)/ ∼

where

u ∼ v if and only if ‖u− v‖W 1,p = 0.

Theorem 4.10. W 1,p(X) is a Banach space.

Proof. See [13, Theorem 3.7].

For a function u ∈ Lp(X,µ) let us define the extended real valued Borel
function,

Lip(u)(x) := lim
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
d(x, y)

,

where we put Lip(u)(x) := 0 if x is isolated point.

Proposition 4.11. If u : X −→ R is Lipschitz, then Lip(u) is an upper
gradient for u.

Proof. Since the restriction of u to any rectifiable curve, γ, is Lipschitz, by
Rademacher’s theorem 2.5, it follows that u(γ(s)) is differentiable for almost
every s. Thus |u′(γ(s))| is an upper gradient (see the argument in (4.2)).
Therefore, it is enough to show that

|u′(γ(s))| ≤ Lip(u)(γ(s))

for those s such that |u′(γ(s))| exists.

Fix a value s̄. We can assume that d(γ(s), γ(s̄)) > 0 for s sufficiently close
to s̄; since otherwise, u′(γ(s̄)) = 0. Then, by continuity, for all sufficiently
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small r, there exists some smallest s(r), with d(γ(s(r)), γ(s̄)) = r ≤ |s(r)− s̄|.
In addition, s(r)→ s̄ as r → 0. We have

|u(γ(s(r)))− u(γ(s̄))|
|s(r)− s̄|

≤ sup
y∈∂B(γ(s̄),r)

|u(y)− u(γ(s̄))|
r

.

Since u′(γ(s̄)) exists, we get

|u′(γ(s̄))| = lim inf
r→0

|u(γ(s(r)))− u(γ(s̄))|
|s(r)− s̄|

≤ lim inf
r→0

sup
y∈∂B(γ(s̄),r)

|u(y)− u(γ(s̄))|
r

= Lip(u)(γ(s̄)).

Definition 4.12. We say that g ∈ Lp(X,µ)+ is a p-relaxed slope of u ∈
Lp(X,µ) if there exists g̃ ∈ Lp(X,µ)+ and a sequence of Lipschitz functions
(un)n such that

(i) un → u in Lp(X,µ) and Lip(un) weakly converges to g̃ in Lp(X,µ);

(ii) g̃ ≤ g µ-a.e. in X.

It is easy to see that the set of all p-relaxed slope of u is a closed convex set
in Lp(X,µ). By uniformly convexity of Lp(X,µ), among all p-relaxed slope
of u there is one with minimal Lp-norm. Such an element will be denoted by
|∇u|∗,p.

By Proposition 4.11, since Lip(un) are in particular p-weak upper gradi-
ent, and weak convergence is stable under p-weak upper gradient, it follows
that

ρu ≤ |∇u|∗,p, µ-a.e. in X,

for all u ∈ Lp(X,µ).

It is an exercise to prove that the vector space W 1,p(X,µ) endowed with
the new norm ‖u‖Lp + ‖|∇u|∗,p‖Lp became a Banach space, and the identity
operator

id : (W 1,p(X,µ), ‖ · ‖Lp + ‖ |∇ · |∗,p‖Lp) −→ (W 1,p(X,µ), ‖ · ‖Lp + ‖ρ·‖Lp)

is a surjective bounded linear operator. As a consequence of the open mapping
theorem, it follows that the two norms above in W 1,p(X,µ) are equivalents.

Remark 4.13. Actually, in [1, Theorem 6.1] the authors proved that the
two norms above are equals.
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4.0.2 Reflexivity of Cheeger-Sobolev space

Though the Cheeger-Sobolev space is always a Banach space, the deep dif-
ference with the classical one is that the space is not in general reflexive as
the following shows.

Example 4.14. Let (an)n be a sequence in ]0, 1[ which converges to zero,
and let

X =
∏
n∈N

[0, an],

endowed with the norm ‖(xn)n‖∞ = maxn xn. There is a natural product
(probability) measure µ on X, that is the product of normalized Lebesgue
measures on each factor [0, an]. Now consider a sequence (fn)n of functions
fn : X −→ R that are the projections on the factors; i.e., fn(x) = xn for
x = (xn)n ∈ X. Because each function fn is 1-Lipschitz on X, and bounded
by 1, the sequence (fn)n is a bounded sequence in W 1,p(X). Assuming that
the Cheeger-Sobolev space in question is reflexive, a weakly convergent sub-
sequence could be found with weak limit f . By passing to Mazur’s lemma
we would further find a sequence (gm)m consisting of convex combinations of
the functions fn,

gm = λm,1fm1 + · · ·+ λm,kmfmkm

where 0 ≤ λm,j ≤ 1 and λm,1 + · · · + λm,km = 1, with mki →∞ as m→∞,
such that gm → f strongly in W 1,p(X). It follows that f = 0. Moreover, from
the norm structure it is easy to check that the minimal upper gradient of
each gm is identically λm,1 + · · ·+ λm,km = 1, which contradicts the fact that
gm → 0 in W 1,p(X).

Now, we would like to prove the marvelous result of Ambrosio, Colombo,
Di Marino [1], regarding the reflexivity of the Cheeger-Sobolev space W 1,p(X)
in case X is a doubling separable metric and µ is a Borel measure on X finite
on bounded sets. To do so, we take advance on the doubling property to create
nice partition on X.

Lemma 4.15. For every δ > 0 there exist `δ ∈ N ∪ {∞} and pairs set-point
(Aδi , z

δ
i ), 0 ≤ i < `δ, where Aδi ⊆ X are Borel sets and zδi ∈ X, satisfying:

(i) the sets {Aδi : 0 ≤ i < `δ} forms a partition of X;

(ii) d(zδi , z
δ
j ) > δ, for i 6= j;

(iii) B(zδi ,
δ
3
) ⊆ Aδi ⊆ B(zδi ,

5
4
δ);
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(iv) for each 0 ≤ i < `δ then the cardinality of

s(i) = {j ∈ N : d(Aδi , A
δ
j) < δ}

is less than λ3 (doubling condition);

(v) x ∈ Aδk if and only if k = min Iδx where

Iδx = {i ∈ N : d(x, zδi ) ≤ d(x, zδj ) +
δ

8
, ∀j ∈ N};

we are minimizing the quantity d(x, zδi ) and among those indeces i who
are minimizing up to δ

8
we take the least one ix.

Proof. Let {xk}k∈N be a dense in X. Let us choose zδ0 = x0. Recursively
consider Bi = X \

⋃
j<iB(zδj , δ) and choose ki = min{k ∈ N : xk ∈ Bi}.

Then choose zδi = xki . Using density and by construction, it easily follows
that

X =
⋃
i

B(zδi , δ +
δ

8
).

Then define

Aδ0 := {x ∈ X : d(x, zδ0) ≤ d(x, zδj ) +
δ

8
, ∀j > 0}

Aδi := {x ∈ X : d(x, zδi ) ≤ d(x, zδj ) +
δ

8
, ∀j > i}

It is easy to see that Aδi and the points zδi satisfy all the properties required.
Let us note that (iv) follows form the fact that we can cover B(zδi , 4δ) with
λ3 balls with radius δ

2
but each of them can contain only one of the zδj ’s (by

(ii)).

In order to define our discrete gradients we give more terminology. We
say that Aδi is a neighbor of Aδj , and we denote by Aδi ∼ Aδj , if their distance
is less than δ. In particular Aδi ∼ Aδj implies that d(zδi , z

δ
j ) ≤ 4δ: indeed, if

z̃δi ∈ Aδi and z̃δj ∈ Aδj satisfy d(z̃δi , z̃
δ
j ) ≤ δ′, we have

d(zδi , z
δ
j ) ≤ d(zδi , z̃

δ
i ) + d(z̃δi , z̃

δ
j ) + d(z̃δj , z

δ
j )

≤ 10

4
δ + δ′

(letting δ′ → δ) ≤ 14

4
δ
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≤ 4δ.

Now we fix δ ∈]0, 1[ and we consider a partition {Aδi : 0 ≤ i < `δ} of X on
scale δ. For every u ∈ Lp(X,µ) we define the average uδ,i of u in each cell
of the partition by

ffl
Aδi
u dµ. We denote by PCδ(X), which depends on the

chosen decomposition as well, the set of functions u ∈ Lp(X,µ) constant on
each cell of the partition at scale δ, namely

u(x) = constant, for µ-a.e. x ∈ Aδi .

Then we can define the linear projection

Pδ : Lp(X,µ) −→ PCδ(X)

by

Pδ(u) = uδ,i, for every x ∈ Aδi .

Lemma 4.16. Pδ are contractions in Lp(X,µ) and Pδ(u)
δ→0−→ u in Lp(X,µ)

for all u ∈ Lp(X,µ).

Proof. The contractivity of Pδ is a simple consequence of Jensen’s inequality.

To show that Pδ(u)
δ→0−→ u in Lp(X,µ), it is enough to get that convergence

in a dense subset of Lp(X,µ), in the set of bounded continuous functions with
bounded support. Since X is doubling, if u is any of such a function, then

u is uniformly continuous and then Pδ(u)
δ→0−→ u pointwise. The conclusion

follows by the dominated convergence theorem.

For each δ ∈]0, 1[ and i ∈ N, let

|Dδu|p(x) :=
1

δp

∑
j: Aδi∼Aδj

|uδ,i − uδ,j|p, ∀x ∈ Aδi .

Let us also define Fδ,p : Lp(X,µ) −→ [0,∞] by

Fδ,p(u) :=

ˆ
X

|Dδu|p(x) dµ(x).

Lemma 4.17. For each curve γ : [a, b] −→ X, with length(γ) ≥ δ/2, we
have

|Pδ(u)(γ(b))− Pδ(u)(γ(a))| ≤ 4

ˆ
γ

|Dδu|(t) dt.
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Proof. WLOG we can assume that δ/2 ≤ length(γ) ≤ δ; otherwise slice [a, b]
in subintervals in which we have that estimates and then use the triangle
inequality. Since, for each t ∈ [a, b], d(γ(t), γ(a)) < δ and d(γ(t), γ(b)) < δ,
so that the cell relative to γ(a) and γ(b) are both neighbors of the one relative
to γ(t). So, by definition

|Dδu|p(γ(t)) ≥ 1

δp
[|Pδ(u)(γ(b))− Pδ(u)(γ(t))|p + |Pδ(u)(γ(t))− Pδ(u)(γ(a))|p]

≥ 1

2p−1δp
|Pδ(u)(γ(b))− Pδ(u)(γ(a))|p.

Then ˆ
γ

|Dδu|(t) dt ≥
1

21− 1
p δ
|Pδ(u)(γ(b))− Pδ(u)(γ(a))| · length(γ)

≥ 1

4
|Pδ(u)(γ(b))− Pδ(u)(γ(a))|

Lemma 4.18. Assume (εn)n be a null sequence of positive reals, (fn)n ⊆
Lp(X,µ) and (gn)n ⊆ Lp(X,µ)+ such that

|fn(a)− fn(b)| ≤
ˆ
γ

gn ds

for all a, b ∈ X and for all p-almost every curve γ in X with end points a
and b such that length(γ) ≥ εn.

Assume furthermore that fn(x) → f(x) for µ-a.e. x ∈ X and (gn)n con-
verges weakly in Lp(X,µ) to some g ∈ Lp(X,µ). Then g is a p-weak upper
gradient of f .

Proof. Combine Mazur’s theorem and the argument seen in Fuglede’s Lemma
4.4.

Since Lp(X,µ) is separable, by Proposition 3.2, unless to pass through a
subsequence, we can assume that Fδ,q have Γ-limit points as δ → 0; i.e., let

Fp := lim
k→∞
Fδk,p

for some infinitesimal sequence (δk)k, where the limit is computed with re-
spect to Lp distance.

Theorem 4.19. (a) There exists η = η(p, λ) (keep in mind λ denotes the
doubling constant), such that

1

η
‖ρu‖Lp ≤ Fp(u) ≤ ‖ρu‖Lp .
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(b) The norm on W 1,p(X,µ)

[‖u‖pLp + Fp(u)]
1
p

is uniformly convex.

Proof. For what we said in the paragraph preceding Remark 4.13, it is enough
to prove the inequality involving |∇u|∗,p.

Let u : X −→ R be a Lipschitz function with bounded support. Let
i, j ∈ {1, . . . , `δ} such that Aδi and Aδj are neighbors. For every x ∈ Aδi and
y ∈ Aδj we have d(x, y) ≤ (10/4+10/4+1)δ = 6δ and that y ∈ B(zδi , 19/4δ) ⊆
B(zδi , 5δ). Hence

|uδ,i − uδ,j|
δ

≤ 1

δµ(Aδi )µ(Aδj)

ˆ
Aδi×Aδj

|u(x)− u(y)| dµ(x)dµ(y)

≤ 6Lip(u|B(zδi ,5δ)
)

Thanks to the fact that the number of neighbors of Aδi does not exceed λ3,
we obtain

|Dδu|p(x) ≤ 6pλ3
(

Lip(u|B(zδi ,5δ)
)
)p
.

Integrating on X we obtain that

Fp(u) ≤ lim inf
k→∞

Fp,δk(u) ≤ 6pλ3

ˆ
X

|∇u|p∗,p dµ.

Hence we have the right hand side of (a). For the left hand side, we can
assume that Fp(u) is finite. Therefore, the sequence (|Dδkuk|)k is bounded in
Lp(X,µ). By weak compactness, unless to pass through a subsequence,

|Dδkuk|
k→∞−→ g weakly in Lp(X,µ).

By the lower semicontinuity of the p-norm with respect to the weak conver-
gence, we have thatˆ

X

gp dµ ≤ lim inf
k→∞

ˆ
X

|Dδkuk|p dµ = lim
k→∞
Fδk,p(uk).

Now, apply Lemma 4.18 to Pδk(uk) which converges to u in Lp(X,µ) thanks
Lemma 4.16, and to the functions 4|Dδkuk| which are p-weak upper gradient
of Pδk(uk) (up to scale δk/2) thanks Lemma 4.17.

We obtain that 4g is a p-weak upper gradient of u, hence g ≥ ρu/4 µ-a.e.
in X. Therefore,

1

4p

ˆ
X

ρpu dµ ≤
ˆ
X

gp dµ ≤ Fp(u).

We leave (b) as esercize.
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As consequence of the previous Theorem and Proposition 3.3, we get the
main result of this section.

Corollary 4.20. Let (X, d) be a separable doubling metric space supporting
a Borel measure µ finite on bounded sets. Then the Cheeger-Sobolev space
W 1,p(X,µ) is reflexive.
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